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» Cylindriéal Microstrip Line Partially Embedded
in a Perfectly Conducting Ground Plane

Heshém A. Auda

Abstract —The quasi-TEM characteristics of a novel cylindrical mi-
crostrip line are rigorously determined. The line consists of an infinitesi-
mally thin strip on the surface of a dielectric cylinder partially embed-
ded in a perfectly conducting ground plane. Expressions for the
potential distribution inside and outside the dielectric substrate, the
charge distribution on the strip, and the capacitance of the microstrip
line are derived. Sample numerical results based on the derived expres-
sions are also given and discussed. In particular, it is shown that the
effective dielectric constant for the symmetrical microstrip line is a
linear function of the substrate’s dielectric constant, and is almost
independent of the strip width.

1. INTRODUCTION

Conformal microstrip lines on cylindrical and elliptic dielec-
tric substrates are widely utilized in the excitation of conformal
missile antennas and arrays, and have therefore become the
focus of increasingly active research efforts. Much of the previ-
ous research has been directed toward determining the quasi-
TEM characteristics of cylindrical and elliptic striplines and
microstrip lines in homogeneous free space. In this type of
analysis, the characteristic impedance and propagation constant
of the quasi-TEM mode of the line are determined in terms of
the static capacitance of the line. Among the methods used with
success are conformal mapping [1]-[3], numerical solution of
Laplace’s equation in cylindrical and elliptic coordinate systems
[4], [5], and spectral-domain [6] and Green’s-function-based inte-
gral equation [7] techniques.

In this paper, the quasi-TEM characteristics of a novel cylin-
drical microstrip line are rigorously determined. The line con-
sists of an infinitesimally thin strip on the surface of a dielectric
cylinder partially embedded in a perfectly conducting ground
plane (see Fig. 1). The microstrip structure is referred to as
cylindrical microstrip line because of its cylindrical substrate.
The line geometry can be generalized to a configuration which
has found wide application in the design of cylindrical radiating
structures [8] by placing cylindrical or elliptic substrate on a
dented perfectly conducting wedge. In addition, the new mi-
crostrip line may be considered a possible alternative to the
familiar planar microstrip line. The new line has a distinct
advantage over the planar line with regard to the amount of
dielectric material saved and the rigor with which coupling
between multiple microstrip lines can be studied. It also com-
bines, particularly in the case of wide strips, the coplanar
waveguide and conductor-backed coplanar waveguide structures
in one structure [9]. The merits of the proposed line revealed
here further demonstrate its practical significance.

The method of analysis utilized relies on the derivation of the
exact potential distributions outside and inside the dielectric
cylinder. The potentials are constructed in such a way that the
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Fig. 1. Cylindrical microstrip line partially embedded in a perfectly

conducting ground plane.

continuity of the potential and, hence, the continuity of the
tangential component of the electric field across the dielectric
interface are automatically enforced. Boundary condition equa-
tions for the problem are obtained from enforcing the potential
to have a specified constant value on the strip and from satisfy-
ing the jump discontinuity in the normal derivative of the
potential across the dielectric interface. The two equations are
subsequently combined and solved using Galerkin’s method.
Expressions for the charge distribution on the strip and the
capacitance of the microstrip line are then obtained. Sample
numerical results based on the derived expressions are also
given and discussed. In particular, it is shown that the effective
dielectric constant for the symmetrical microstrip line is a linear
function of the substrate’s dielectric constant, and is almost
independent of the strip width.

II. FORMULATION

The successful analysis of the partiaily embedded cylindrical
microstrip line hinges on the construction of the exact potentials
both outside and inside the dielectric cylinder. _

The potential outside the diclectric cylinder is constructed
such that it satisfies Laplace’s equation V2V,(p,$) =0, p > a,
0 < ¢ <, subject to the boundary conditions that Vi(a,$)=
(), 0 < ¢ <7, and Vp(p,0)=V(p,7) =0, for p > a. Further-
more, the potential must be both finite and continuous every-
where and regular at infinity. The solution of Laplace’s equation
in this region can be obtained using the method of separation of
variables [10, section 4-2] as

Viord) =n§1Vn(;) sin(nd) )
where
2 T
Vim— fo D(¢)sin(ne)de. )

On the other hand, the potential inside the dielectric cylinder
satisfies the Laplace equation V2Vp(p,$) =0, p<a, 0 < ¢ < 2,
subject to the boundary conditions that V(a,¢)=P(), 0<
¢ <7, and is zero for 7w < ¢ < 27. Furthermore, the potential
must be both finite and continuous at all points inside the
cylinder and on its boundary. The solution of Laplace’s equation
in this region can likewise be obtained using the method of
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separation of variables as

VD<p,¢>=élw(g)”sm<‘n¢>+ngow'(g)”cosw G)

where
;1 .
Vi=—[ @(¢)sin(ne)de )
T 0

Ay d

V=g ) ®(@)cos (nd) dd (5)
and v, is the Neumann number (with vy=1, and v, =2 for
n>1).

Scy, = fsm(kd;)cos(nq&) do =

s (kcos(ko)cos(ng)+nsin(kd)sin(ned)),

1I1. EQUATIONS OF THE PROBLEM

The potentials outside and inside the dielectric cylinder have
been constructed in the previous section in such a way that their
continuity across the dielectric interface and, hence, the conti-
nuity of the tangential component of the electric field [11,
section 3-2] are automatically enforced. It therefore only re-
mains to satisfy the requirement of constant potential, or zero
tangential electric field, at the strip, viz.,

P(p)=V,, a<o<B. (6)
Furthermore, the normal component of the displacement vector,
D = e¢E = — ¢ VV, is discontinuous across the dielectric interface

by the amount of the surface free charge density, o, on the strip.
Consequently,

P 1
E}'VF(‘L([)) = foa(d)),

0, otherwise.

ad
€ Vola.6) - @ssP o)
p

IV. GALERKIN’S SOLUTION

Equation (6) and the last line of (7) are sufficient for the
complete evaluation of the potential ¢ on the dielectric inter-
face. A Galerkin solution of the pair of equations can be
attained by expanding @ in terms of a complete set of orthogo-
nal functions on the dielectric interface. The expansion func-
tions need also be chosen so that ®(0) = &(7r) = 0. An appropri-

Sspi = [ sin (me)sin (k) d = 2

m(k sin(mg)cos(k¢) — mcos(me)sin(ke)),

ate expansion of @ is therefore
D(¢) =V, X asin(k¢) )]
k=1

where a, are real coefficients to be determined.

1
~ 7% s (2k9),

1
—¢> - sm(2k¢)
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Using the expansion (8), the potentials outside and inside the
dielectric cylinder are readily found as

Vi(ord) = VoZa( ) sin(nd) ©)

n=1

o0

_Vo > n(g—)"smw

n=1

Vp(p,d) =

+—1—V i i vnSck,,(O,w)(F—)ncos(nqS).
- n=0 a
(10)

In (10),

n=k+#0
(11)

n+k

where Sc,,(p,q) indicates that the integration in (11) is taken
over ¢ from p to g. Substituting (9) and (10) into (6) and the
last line of (7), there then results, after some manipulation,

Y asin(k¢)=1,

a<op<P (12)
k=1
hod 2
Y a (2+e,)ks1n(k¢)+—e Z nScy,, (0,m)cos(nd)| =0
k=1 n=1
O<b<aorf<d<m. (13)

Testing (12) and (13) with sin(me¢), m=1,2,- - -,
results the system of algebraic equations

there finally

Xa=b (14)

where a =[a,] is the vector of the unknown coefficients, and

X=[X]= [Ssmk(afﬁ) +(2+ €. )k(S5,4(0,@) + 85,1, (B.7))

2 oo
2 T nsers0m)(Sem0.0) +Semn(Bm))| (19

n=1

b=1[b,]= [%-(cos(ma)—cos(mﬂ))]. (16)

In (15),

m=k=+0
(17)

m+k

where Ss,,,(p,q) indicates that the integration in (17) is taken
over the interval [ p, q].

The solution of the system of equations (14) determines the
expansion coefficients a,, k =1,2,- - -, and, hence, the complete
potential distribution outside and inside the dielectric cylinder.
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Fig. 2. Convergence of the capacitance of a symmetrical microstrip
line: @ = 45°and B=135%¢,=1¢( e, =12( ---- ).

V. CHARGE DISTRIBUTION ON THE STRIP AND THE
CAPACITANCE OF THE MICROSTRIP LINE

Substituting now the fully determined potentials, V. and V),
into the first line of (7), the surface free charge density on the
strip is readily found as

1 00
o(d) = ZeoVokglak((2+ €, )ksin(ke)

2 o«
+—€ Y, nSckn(O,v)cos(ndb)), a<dp<B. (18)
aw

n=1

Consequently, the total charge induced on the strip is given by

0=a[ c(¢)do

1 oo
=—eVy 2 ak((2+ €,)(cos (ka)—cos(kB))
2 k=1

2 o)
+—¢€, Y Sc;,(0,7)(sin(nB)—sin(na))|. (19)
™ n=1
The capacitance of the microstrip line is then evaluated as
C=Q/V,. Since all of the entries in the Galerkin system of
equations are independent of the diameter of the dielectric
substrate, this will also be true of the capacitance of the line.

VI. NumMmeRICAL RESULTS AND DiscussioN

The analysis in this paper has been implemented in a FOR-
TRAN program. The potential distribution on the dielectric
interface. the charge distribution on the strip, and the capaci-
tance of the microstrip line have been computed for a wide
variety of parameter values. Sample numerical results are pre-
sented in this section.

The convergence of the capacitance of the microstrip line is
shown in Fig. 2. The convergence curves obtained pertain to a
wide symmetrical strip (@ = 45° and 8 = 135°) on the interface of
a dielectrical cylinder with dielectric constants €, =1 and €, = 12.
Two remarks can be made on the figure. First, a relatively large
number of expansion functions are needed for the convergence
of the solution. However, because all of the series in the
expressions for the matrix elements and the capacitance are
rapidly convergent, the run time is exceptionally fast. Second,
the convergence curves exhibit a stairlike behavior, which can be
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Fig. 3. Potential distribution on the dielectric interface of a symmetri-
cal microstrip line: o =45 and B=135% ¢,=1 ( ); €, =
12( - ).
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Fig. 4. Charge distribution on the strip of a symmetrical microstrip
line: & = 45° and B =135 ¢, =1( e, =12(- -+ - - ).

explained in view of the symmetry of the strip about ¢ = 90° and
the symmetry and asymmetry properties of the cosine function
in the elements of the right-hand-side vector. Similar conver-
gence characteristics have been observed in the case of a narrow
symmetrical strip («¢ = 85° and 8 = 95°) as well.

The corresponding normalized potential and charge distribu-
tions on the dielectric interface and strip are shown in Figs. 3
and 4, respectively. As can be seen from Fig. 3, the normalized
potential attains the boundary value of unity with high precision.
Furthermore, the potential is quite insensitive to the value of
the dielectric constant. In contrast, an examination of Fig. 4
shows that the effect of the dielectric constant on the charge
distribution is pronounced. Another characteristic of the charge
distribution is worth noting. The edge condition requires the
limit of the charge distribution as ¢ approaches a or 8 to be
infinity [12]. On the other hand, an entire domain type of
expansion has been utilized to represent a charge distribution
that identically vanishes outside the strip. The combined effect
of these two situations is readily seen in the forced descent of
the charge distribution as it approaches the two edges so as to
obtain the average of the two side limits at each edge, as
demanded by the theory of Fourier series. The oscillations in
the charge distribution associated with the Gibbs phenomenon
have substantially been reduced by utilizing the Lanczos conver-
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Fig. 5. Change of the capacitance of a symmetrical microstrip line with
the strip width: @ =45° and B=135% ¢, =1 ( Y €, =12 (- ).

gence factor in the summation of the Fourier series for the
charge [13, sections 14-4,5].

The change of the capacitance of a symmetrical microstrip
line with the strip width is shown in Fig. 5. The limiting case of
two infinitesimal gaps between the strip and the conducting
plane is a standard electrostatic boundary value problem. The
solution of the latter problem can be extracted from the analysis
presented by setting & =0 and 8= . In this case, the cos(n¢)
term drops off the potential distribution inside the dielectric
cylinder, and the Galerkin matrix reduces to a diagonal matrix
(X,,.x = 0.578,,,, where 8 is the Kronecker delta function). The
coefficients of expansion are then readily solved for as

4

—_ k=1,3,---.
7k

a, +

(20)

Substituting (20) into (18), the charge distribution density be-
comes

NZ
Y sin(kg)=——(2+¢,)csc(d).
—odd ma
(21)
Integrating (21) over ¢ from A to m— A, where A is the gap

width, and dividing the result by Vj,, the limiting capacitance is
found:

V.
c(9)=2"22(2+e,)
ma x

C=%eo(2+ €,)log (cot(%A)) (22)

where “log” denotes the natural logarithm. Using (22), the
normalized capacitance, C /¢, for gaps of width A =1°is 9.055
for €, =1 and is 42.258 for €, = 12, compared, respectively, with
8.589 and 40.692, as obtained from Fig. 2.

Finally, the capacitance of the microstrip line normalized with
respect to the capacitance for e, =1 is plotted in Fig. 6 for both
narrow and wide strips in the dielectric constant range 1<e, <
36. As can be seen, the strip width has an almost negligible
effect on the ratio of capacitances. Furthermore, in the dielec-
tric constant range considered, this ratio is a linear function of
the dielectric constant. This is quite significant since the ratio
C(e,)/Cle, = 1) is equal to the effective dielectric constant for
the microstrip line [14, section II-A]. A simple formula for the
effective dielectric constant for the microstrip line is therefore
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Fig. 6. Change of the normalized capacitance C(e,)= C(e, =1) (the
effective dielectric constant) of a symmetrical microstrip line with the
dielectric constant for o =85° and 8 =95°( ) and for « = 45° and
B=135°(----- ).

readily found as

()
C(e,=1)

eF =0.33¢, +0.67, I<e, <36, (23)
In quasi-TEM analysis, the propagation constant, x, and the
characteristic impedance, {, of the microstrip line normalized
with respect to the values of the ‘corresponding homogeneous
(e,=1) line, x, and {,, are equal to the square root of the
cffective dielectric constant and its inverse, respectively. The
sensitivitiecs of the normalized propagation constant and the
characteristic impedance of the microstrip line with respect to
the substrate’s dielectric constant are of interest as well. By
definition [15, section 9-1], the sensitivity of A’ with respect to

“B” is given by

B oA dlog(A
= () @9
whence
S“"‘°=—Sg‘5°=—55f=l—\—0'3~36'— 1<e, <36
< e 27 2033, +0.67° r
(25)

upon using (23). Thus, the sensitivity of the normalized propaga-
tion constant (characteristic impedance) of the microstrip line is
a bounded (0.165 < |S] < 0.473 for 1< e, <36), monotonically
increasing (decreasing) function of the substrate’s.dielectric con-
stant.

VII. SummMmary

The quasi-TEM characteristics of a novel cylindrical mi-
crostrip line have been rigorously determined. The line consists
of an infinitesimally thin strip on the surface of a dielectric
cylinder partially embedded in a perfectly conducting ground
plane. Expressions for the potential distribution inside and
outside the dielectric substrate, the charge distribution on the
strip, and the capacitance of the microstrip line have been
derived. Sample numerical results based on the derived expres-
sions have also been given and discussed. In particular, it has
been shown that the effective dielectric constant for the sym-
metrical microstrip line is a linear function of the substrate’s
dielectric constant, and is almost independent of the strip width.
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First-Order Model of Symmetrical Six-Port
Microstrip Ring Coupler

S.P.Yeoand C. L. Lau

Abstract —This paper describes, in brief, how the simple eigenmode
approach can be utilized to develop a first-order model that yields
explicit ready-to-use formulas for predicting the performance character-
istics of a symmetrical six-port microstrip ring coupler. Prototype tests
conducted over the 2—-5 GHz frequency range show the agreement
between the predicted and measured values of the coupler’s scattering
coefficients to be within + 0.05 for magnitude and +10° for phase.

I. INTRODUCTION

The symmetrical six-port junction (Fig. 1) has over the past
few years been attracting the attention of various researchers.
Riblet er al. [1] designed one for use as a five-way equal power
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Fig. 1. Symmetrical six-port microstrip ring coupler.

divider, while Judah et al. [2] and Yeo et al. [3] showed how it
could also be utilized in a six-port reflectometer setup.

Thus far, satisfactory models to predict the characteristics of
the stripline [1] and waveguide [4] versions of the symmetrical
six-port junction have been reported in the literature. Our
objective in this paper, therefore, is to extend the investigation
to include the analysis of the microstrip version. Actually, a
model of one such microstrip coupler has already been put
forward by Judah et al. [2]; however, their circuit topology is
more complicated than that of Fig. 1 because they inserted an
additional node at the hub of the structure (thereby rendering it,
for purposes of analysis, effectively a seven-port instead of a
six-port). In contrast, we chose to retain the original simplicity
of the ring layout in Fig. 1 so as to obviate the necessity of
performing a seven-port to six-port circuit reduction (as Judah
et al. [2] had to do).

Il. THEORY

There are two approaches that we can take in the formulation
of our model: eigenmode or noneigenmode. The latter has the
problem of yielding rather long and unwieldy expressions, al-
though, as one referee has pointed out, it does offer flexibility
for studying nonsymmetries in the circuit. The method used in
this paper is based on the eigenmode approach since this, as has
been demonstrated in previous analyses of the symmetrical
N-port junctions [4]-[6], yields simple explicit formulas that can
be readily used for design work.

Assuming that the curvature of the central ring line can be
ignored (as Cullen er al. [7} and Judah et al. [2] did in their
analyses), we are able to represent the circuit connections be-
tween any three consecutive ports k —1,k,k +1 by the equiva-
lent transmission-line model of Fig. 2, where, for the mth
eigenmode,

mm
Uk=Uk_1eXp(~]T)

m
—r.L)

5 )
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